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Mass transfer in annuli for both fully developed laminar and turbulent flow conditions has been 
studied with respect to available experimental data. It is shown that prediction of  the Sherwood 
number  for the inner annular  wall based on the hypothesis of  coincidence of  the zero shear stress 
position for laminar and turbulent flows leads to serious error in the case of  small radius ratio. 
Also it is shown that in contrast  with plain tubes the curvature in small radius ratio annuli should 
be taken into account for the case of  small Reynolds numbers. In consequence, the well-known 
Leveque equation can be used for the calculation of  the mass transfer coefficient in annuli only under  
certain conditions. Possibilities of  electrodiffusion diagnostics for the precise determination of  the zero 
shear stress position in annuli are discussed. 
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1. Introduction 

cross-section flow area (m 2) 
annular radius ratio (--)  
mean fluctuation and bulk 
concentration (tool m -3) 
molecular diffusivity (m 2 s -l) 
hydraulic diameter (m) 
overall, inner and outer wall friction 
factors (--)  
near wall velocity gradient (s -1) 
pressure drop per unit of length 
(pare -1) 
average mass transfer coefficient 
(ms -1) 
ratio of zero shear stress position in 
turbulent and laminar flows (--)  
mass transfer surface length (m) 
diffusion 'leading edge' length (m) 
diffusion entrance length (m) 
wetted perimeter (m) 
Reynolds number ( - - )  
radial distance from conduit axis 
(in) 
radial distance of zero shear stress 
position in turbulent and laminar 
flows (m) 
radius of inner and outer annular 
cylinders (m) 

The concentric annular geometry has many engineer- 
ing applications, for example in heat exchanger and 
nuclear reactor design. Also, mass transfer to fluids 
flowing through annuli is frequently encountered 

Sc = u/D 
sh = I~LG/D 
Gv 
U, U ¢ 

! 
V~ V 

y = r - - r  1 

Yr = /2(/3/7-1)1/2 

Z 

molecular Schmidt number (--)  
Sherwood number (--)  
average liquid velocity (m s -1) 
mean and fluctuation axial velocity 
(ms -1) 
mean and fluctuation radial velocity 
( m s  -1 ) 

distance from the inner wall (m) 
dynamic length (m) 
distance in direction of the flow (m) 

Greek symbols 
6D 
# 
l/ 

P 
7- 

7-w 

diffusion layer thickness (m) 
dynamic viscosity (Pa s) 
kinematic viscosity (m 2 s -1) 
density (kgm -3) 
shear stress (Pa) 
wall shear stress for tube and plate 
channel (Pa) 

7-1 , % wall shear stress for inner and outer 
annular cylinders (Pa) 
Geometrical factor with respect to 
k-function (--)  

~R, ~K geometrical factor with respect to 
Rothfus or Kays-Leung equations 
(--) 

A ratio of radial distance of zero shear 
stress position to outer radius in 
laminar flow (--)  

in industrial processes: electrochemical reactors, 
condensers, transpiration and film cooling of ducts. 
As such, flow and mass transfer in an annular 
geometry have been studied extensively by many 
workers. Nevertheless, even in the simplified case of 
fully developed flow in smooth annuli, previous 
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papers [1-7] give an incomplete account of the 
principles of mass transfer from flowing solution, 
especially for the case of turbulent flow. 

The key problem in turbulent flow through smooth 
annuli is the determination of the position of the zero 
shear stress plane and hence, the wall shear stress at 
the inner and outer cylinders, respectively. Previously 
the mass transfer problem in annuli has been 
studied by assuming the coincidence of zero shear 
stress position for laminar and turbulent flows. Yet, 
this assumption cannot be applied in the case of 
annuli with small radius ratio, as it has been shown 
elsewhere [8-20]. So, the prediction of the friction fac- 
tor for the inner cylinder, based on the classical works 
of Rothfus [21,22] is not sufficient for the calculation 
of the Sherwood number, Sh, especially for turbulent 
flow in annuli with very small radius ratio. 

The case where the inner cylinder radius is small 
with respect to the outer one should be studied for 
comparison of the results obtained in annulus, 
channel and tube. The simple solution developed by 
Leveque for the heat-transfer coefficient in laminar 
flow past a fiat plate can be expressed in mass transfer 
terms and without any problem applied to the case of 
tubes. For the case of  annuli this procedure is correct 
only if the definite relation between the Reynolds 
number, Re, the length of the active part of the 
surface, L, and the outer and inner annulus radii is 
verified. The concrete form of this relation will be 
discussed. 

2. Convective diffusion equation for the annular flow cell 

The basic differential equation of turbulent diffusion 
in polar cylindrical coordinates with axial symmetry 
may be written: 

_O? _0~ O(c'u') 10(rc'(/) 
U-~z + V-&r +---O-~z -+ r Or - D 

[0(ro q 
x N \ Or} + Oz2J (1) 

For fully developed hydrodynamic conditions, we 
have 

= ~ = 0 ;  a=z i ( r )  

For  this case Equation 1 takes the form 

_Of O(c'u') l O(rdC) 
U - ~ z + ~ +  r ~ - D 

x [ l O  f O~ [rgrl, (2) 

We consider the case where the active part of 
the surface (a cathode, for example) forms part of the 
inner wall of the annular cell. The mass transfer 
surface length L (i.e. the electrode length) is assumed 
to be small in comparison with the diffusion entrance 
l e n g t h  Len t . For turbulent flow the diffusion entrance 
length can be defined by the length of the zone where 
a diffusion layer of a constant thickness is formed. 

Within this entrance zone mass transfer to the surface 
occurs through the mean axial velocity and molecular 
diffusion. Turbulent fluctuations do not play any 
considerable role and the diffusion layer thickness 
increases downstream with the flow. In contrast, 
outside the entrance zone the mass transfer to the 
surface is due to the normal velocity pulsations as 
well as molecular diffusion and the diffusion layer 
has a constant thickness. So, for the case when 
L << Len t both turbulent terms on the left-hand side 
of Equation 2 can be neglected. 

On the other hand, we consider that the cathode 
length L is large in comparison with the diffusion 
'leading edge' LD, which is the length of the zone 
where axial molecular diffusion is important. Outside 
this 'leading edge' axial molecular diffusion has no 
influence and, hence, the last term on the right-hand 
side of Equation 2 can be neglected. 

The criteria L << Lent and L >> L o have been 
, analysed in a number of papers [23-28]. To obtain 
, the concrete form of these criteria one can use the 

' estimations proposed by Hanratty [28]: 

0.5y~ < L < 700y~ (3) 

where y~ is the dynamic length. Of course, the 
diffusion entrance length, as well as the length of the 
diffusion 'leading edge', depend on the molecular 
Schmidt number, Sc [27]: 

L D ~ Sc-1/2y r 

Len t ~ Scl/4ey//2(Tyyfr)-3/4y r (4) 

where eyy is the turbulence intensity of the normal 
velocity on the external boundary of the viscous 
sublayer (y = 5y~), Tyy is the correlation time of the 
normal velocity fluctuations within the viscous 
sublayer and f~ is the near wall mean velocity 
gradient. 

So, the numerical constants in Equation 3 
correspond to typical conditions of mass transfer 
experiments with Sc ~ 1000. As an example, for 
annuli with moderate radius ratio, the diffusion 
entrance length Len t is about 15cm for Re ~_ 104 and 
dh -- 10 cm. Using the above-mentioned assumptions 
Equation 2 simplifies to 

rl +~y Oy (q + y) (5) 

with the following boundary conditions 

c ~ c 0 a s y  ) c~, o r z  , O/~ 

c , 0 as y , 0 ~ (6) 

The beginning of the z-axis coincides with the 
beginning of the mass transfer surface, and 
y = r - r a denotes the distance from the inner wall. 

The form of Equation 5 and the boundary con- 
ditions (Equation 6) are absolutely the same for 
laminar and for turbulent annular flows. So, all the 
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differences between laminar and turbulent mass 
transfer coefficients will be connected with the 
differences of the velocity profiles. 

Additional simplifications can be made because of 
the large magnitude of the molecular Schmidt 
number for the mass transfer problem. The diffusion 
boundary layer is very thin, so the velocity near the 
inner wall can be conveniently expressed in terms of 
the wall shear stress: 

u(Y) = (7"1/#)Y (7) 

Usually [1-7] the solution of the mass transfer 
problem in tubes and annuli is obtained from the 
Leveque equation: 

7"1 0~ 02c 
7 y-~z = D coy---- 5 (8) 

It should be emphasized that the transition from 
Equation 5 to Equation 8 is connected with 
modification of the form of the right-hand side term 
in this equation. This modification is correct only 
if the diffusion layer thickness 50 is small in 
comparison with the radius of the inner cylinder 
rl: 

6 D << r 1 (9) 

To obtain a concrete form of the Estimation 9 
the Leveque solution for the concentration profile can 
be used as well as the well known velocity distribution 
in annuli under laminar flow conditions [30]. 
As a result Expression 9 for laminar flows in the case 
of small annular ratio is transformed to 

where 

L << Lma x (10) 

a 2 
L m a x = S c R e ~ r 2  (a<< 1) (11) 

m~l/a)  

gives the estimation for the maximum electrode length 
and the Leveque equation may still be used to predict 
the mass transfer coefficient for the inner annular wall. 

For rather long electrodes (L>Lmax) Equation 5 
with the linear velocity profile (Equation 7) should 
be used to calculate the mass transfer coefficient for 
the inner cylinder. 

For tube flow the estimation of the maximum 
electrode length Lma x also takes the form of 
Equation 11; if, in this equation, the geometrical 
factor aZ/ln(1/a) is transformed to unity and the 
outer radius of the annulus r 2 to the tube radius. So, 
for flow in tubes, the maximum electrode length is 
very large and the curvature does not play a 
significant role. 

Equation 11 demonstrates that, in contrast with 
flow in tubes, the curvature in annuli has an influence 
if both the annular ratio and the Reynolds number are 
rather small. For example, if the annular ratio, a, is 
equal to 0.01 and the Reynolds number is about or 
smaller than 10, the curvature of the geometry should 

be taken into account for the inner mass transfer 
surfaces with length comparable with or larger than 
the outer annular radius. 

For turbulent flow in annuli the estimation of the 
maximum length, Lmax, takes the form: 

L m a x _ l R e 7 / 4 S c  ' i f2 , r2  (a<< 1) (12) 
zou m( t / a) 

and the curvature does not play any important role 
because of the large magnitude of the Reynolds 
number. 

The main conclusion is that the well-known 
Leveque solution for the mass transfer coefficient 
[29] 

K L = 0 .807D(7"1 /#DL)  1/3 (13) 

can be used in annuli, as well as in plain tubes, in all 
cases where the mass transfer surface length L is 
small in comparison with the maximum length Lma x 
(Equations 11-12). In the opposite case (L ~ Lma x), 
which takes place for annuli with small radius ratio 
at low Reynolds numbers, the Leveque solution 
(Equation 13) cannot be used. For this case the 
expression for the Sherwood number can be obtained 
by solving Equation 5. 

3. Hydrodynamic characteristics of the flow in annuli 

3.1. Friction factor in annuli 

Overall friction factors, f ,  for tubes, channels, 
passages and annuli may be calculated from pressure 
drop measurements, using 

f - 2pUZv/dh (14) 

and can be presented in terms of the hydraulic 
diameter dh = 4A/Pw, where A is cross-sectional 
flow area and Pw is wetted perimeter. For concentric 
annuli the hydraulic diameter, dh, is equal to 
2(r2 -- rl). 

For circular tubes and parallel plate channels the 
pressure drop for fully developed hydrodynamic 
conditions is directly connected to the wall shear 
stress 7.w: 

7.w = ~A/~'w (15) 

so the friction factor can also be written in terms of the 
wall shear stress as follows: 

27.w 
f - pU2a v (16) 

For annuli the wall shear stresses at outer, 7.2, and 
inner, 7"1, cylinders are different, so Equation 15 is 
modified to 

~ _  2 7.2r2 + 7"~rl 
r2 _ ra 2 (17) 

Hence, two different friction factors should be 
introduced, as was done for the first t ime by 
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Rothfus [21], 

-- 27"1 and f 2 -  27"2 (18) 
f l  pU2v pU2v 

For smooth circular tubes and parallel plate 
channels the dependence of the overall friction factor 
on the Reynolds number is well established and can be 
described by the classical Blasius law: 

f = O.079Re -1/4 (19) 

or for large values of the Reynolds number, Re > 105, 
by Nikuradse's law [34]: 

f -1 /2  = 4.0 l o g ( R e f  1/2) - 0.4 (20) 

The deviation of the data of different authors is within 
10% accuracy. This deviation is connected with 
instrumental errors as well as with differences in 
the experimental conditions (different range of the 
Reynolds number, different length of the entrance 
section, etc.). 

Numerous attempts have been made to establish 
the dependence of the overall friction factor, f ,  on 
Reynolds number in annuli. In some early works 
[21, 31-33] a significant difference between overall 
friction factor in plain tubes and concentric annuli 
was found. But there was evidently little agreement 
between these investigations: opposite conclusions 
had been drawn about the dependence of the 
overall friction factor on the radius ratio and 
the Reynolds number. Obviously the conclusion 
that the friction factors in tubes and annuli are 
significantly different is connected with instrumental 
errors. 

More careful and extensive studies [8-10] showed 
that overall friction factors for annuli are very near 
to those in plain tubes. Probably the overall friction 
factor in annuli increases slightly (about 10% in 
comparison with plain tubes) with increase in the 
radius ratio. This corresponds with the results of 
[11] according to which the pressure drop coefficients 
of parallel plate channels are about 5% higher than 
the circular tube values. 

So, the available experimental data show that for 
plain tubes, parallel plate channels and concentric 
annuli the same Blasius (Equation 19) or Nikuradse 
(Equation 20) laws can be used to predict the overall 
friction factor. 

3.2. Correlation between the wall shear stress and the 
position of the zero shear stress 

Prediction of the friction factors for inner fl  and outer 
f2 annular cylinders is a more complicated problem. 
This problem can be reduced to the prediction of the 
zero shear plane position. 

Let us obtain the equation for the position of 
zero shear stress in terms of the wall shear stress 
for the case of fully developed turbulent flow in 
smooth annuli. The equation for the time-averaged 
axial fluid velocity distribution for this case takes 

the form: 

p d  [ ( d~ u---~v~) ] 
g=rd r r  r U~r r -  (21) 

By integrating Equation 21 with respect to r and 
applying the boundary conditions at the inner and 
outer walls, the equation for the shear stress is 
obtained: 

7-(r) = -PU~rr+ pu'v' = - ~  r - (22) 

as well as two forms of the equation for the position of 
the zero shear plane r0: 

~- ( r°2'~ (23) 
r l = - ~  r l - r l  / 

~ (  r°2"~ (24) r2=-$ r2-r2 } 

Combining Equations 23 and 24 and taking 
into account Expression 17 for the pressure drop, the 
symmetrical form of the equation for the zero shear 
stress position can be obtained. Thus, 

ro = [_rlr2(%rl +>r2).] 1/2  

[_ r27-2 + rlT- 1 J 
= [ 2rlr2(7-2rl q- 7-1r2)11/2 (25) 

( 4  - J 

Equations 17, 23 and 24 can also be obtained by 
consideration of the force balance between the wall 
shear stress and the pressure drop. For the case of 
small radius ratio Equation 25 simplifies to 

( ~ ) 1 / 2  
r 0 = (26) 

asa<< 1. 
Equation 23 or its limiting case Equation 26 allows 

prediction of the wall shear stress at the inner cylinder 
if the position of the zero shear plane is known. 

3.3. Location of the position of the zero shear plane 

In laminar flow the position of zero shear stress 
coincides with the position of the maximum velocity 
and is given by Lamb's Equation 30: 

1  .a2 ] 1/2 
r0,L = r2 21n(1/a)J  (27) 

Rothfus [21, 22] and later Knudsen [35] supposed a 
coincidence between the position of the zero shear 
plane in laminar and in fully developed turbulent 
flows. This supposition permitted them to predict 
the inner wall friction factor and, hence, the wall 
shear stress at the inner cylinder. That is, 

fl  = 0.079 Re 1/4~R(a ) (28) 



TURBULENT MASS TRANSFER 741 

where the geometric 

gSR(a ) = 

where A = ro, L / r  2. 

factor ff~R(a) is equal to 

1 -- a'~ 1/4 ,~2 _ a 2 
(29) 

The position of the zero shear stress both for 
laminar and turbulent fully developed flow in annuli 
can be predicted by the same Equation 27 only for 
the case of large and moderate annular ratii. Yet, 
this assumption does not hold in the case of small 
annular ratii when the velocity profile is very 
asymmetric. This fact was established in the 
experimental works of Lorenz [36], Brighton and 
Jones [8] and confirmed by other experiments 
[9-15, 37, 381. 

Also, a number of attempts have been made to 
obtain the correct equation for the position of the 
zero shear stress, r0, in fully developed turbulent 
flow. These attempts were based on a statistical 
analysis of experimental results for the case of 
small annular radius ratio as well as on theoretical 
investigations [16-20]. 

Generally, authors do not distinguish the position 
of the maximum velocity and the position of the 
zero shear stress. For example, Kays and Leung [16] 
correlated previous experimental data both for the 
zero shear stress and maximum velocity positions by 
the equation 

, 0 -r l  ("7 (30) 
r 2 -- r 0 \ r 2 /  

with the exponent n = 0.343. According to 
Equation 30 the zero shear stress position depends on 
the annular radius ratio, but not on the Reynolds 
number. 

Quarmby correlated his experimental data [9] by 
Equation 30 with the power n = 0.366. Also he 
obtained theoretically [17] that the power n is 
equal to 0.415 for high Reynolds numbers. Quarmby 
noted that for low Reynolds numbers the zero shear 
stress and the maximum velocity positions depend 
on Re.  

Rehme [10], by analysing the literature data 
[8, 9, 11, 36-38], noted that the maximum velocity 
position in turbulent flows differs from the zero shear 
stress position. For high values of the Reynolds 
number ( R e  ~ 105) the maximum velocity position 
can be satisfactorily correlated by the Kays-Leung 
relation, i.e. by Equation 30 with n = 0.343 [10]. 
Rehme correlated all the previous experimental data 
for the zero shear stress position [11-15], as well as 
his own, by the same Equation 30 but with another 
value of the power, n = 0.386. 

To take into account the dependence of the zero 
shear stress position on the Reynolds number, 
Rehme [10] proposed the following relations: 

ro / r  2 = 0.3864 - 0.0057 logRe for a = 0.1 

ro / r  2 = 0.342 - 0.0171ogRe for a = 0.04 (31) 

ro / r  2 = 0.345 - 0.02955 logRe for a = 0.02 

Now it is definitely established that for fully 
developed turbulent flow in annuli with small radius 
ratio the position of the zero shear stress plane, r0, 
significantly differs from that r0,L predicted by 
Equation 27, so that 

ro = k (a ,  Re)ro, L (32) 

where the k-function depends on the radius ratio and, 
probably, on the Reynolds number. For large and 
moderate values of the radius ratio the k-function is 
near unity and the difference between the zero shear 
stress positions in turbulent and in laminar flows is 
negligible. But for small values of the radius ratio 
this difference is important. For example, with 
respect to [10] for the annular ratio a = 0 . 1  the 
magnitude of the k-function is about 0.77; for 
a = 0.04, k -~ 0.65; and for a = 0.02, k ~- 0.53. 

4. Mass  transfer results 

4.1. De te rmina t ion  o f  S h e r w o o d  number  f o r  the inner 

annular cyl inder 

The prediction of the mass transfer coefficient in 
turbulent flows is reduced to the prediction of the 
wall shear stress at the inner cylinder. Ross and 
Wragg [1] have made the most comprehensive 
contribution regarding the study of mass transfer in 
fully developed turbulent flows in annuli. They 
based their treatment on the work of Rothfus [21, 22] 
as well as the work of Knudsen [35], who supposed a 
coincidence between the position of the zero shear 
plane for fully developed laminar and turbulent 
flows. But as was noted above this assumption does 
not hold in the case of small annular radius ratio. 

To obtain the correct form of the equation for the 
Sherwood number for the inner annular cylinder we 
use the expression for the inner wall shear stress i.e. 

rl  = ~ -  2a21n(1 /a)  1 (33) 

which can be obtained by combining Equations 23, 27 
and 32. By substituting Equation 33 into Equation 13 
we obtain the expression for the inner wall 
Sherwood number in terms of the pressure gradient 7. 
Thus, 

[47r4 ( 1 -  a)3] 1/3 [ 
S h 1 : 0 . 8 0 7 [  ;~-D~y j k 2 l - a 2  

2a 2 in( l /a)  

1] 1/3 

(34) 

a < < l  For small values of the radius ratio 
Equation 34 simplifies to 

2r 4 ] t/3 
Shl  = 0"807k2/371/3 # L D a  5 In( I /a)  for a << 1 

(35) 
The transition from Equation 34 to Equation 35 is 
valid if both conditions a << 1 and rl << r0 take 
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place. The last condition gives the possibility of 
neglecting unity in the second bracket in Equation 34. 

To present the Sherwood number in terms of the 
Reynolds number Equation 19 or 20 for overall 
friction factor can be used. For example, for the 
moderate range of Reynolds number Re < 105, the 
Blasius law (Equation 19) for the overall friction 
factor can be used and Equation 34 and 35 are 
reduced to 

Sh 1 = 0.275Scl/3(dh/L)l/3 ReV/lZ[~(a)] 1/3 (36) 

where the function q~(a) is determined by the 
following equation: 

• (a) = k2(1 + a) a 
(37) 

2aln(1/a)  1 - a 

o r ,  for small values of the radius ratio, by the 
following equation 

k 2 

• (a) - 2a ln ( l / a )  for a << 1 (38) 

The identification of the if-function with a pure 
geometrical factor is not correct because the 
k-function in Equations 37 and 38 depends on the 
Reynolds number as well as on the radius ratio (for 
example, see [9, 10]). 

It is clear that the main distinction between the 
procedure proposed by Ross and Wragg [1] for the 
prediction of the Sherwood number and the present 
treatment is directly connected with the difference of 
the k-function from unity. For example, if the 
annular radius ratio, a, is equal to 0.1, then the 
magnitude of the k-function is near 0.77. Hence, the 
error in calculation of Sherwood number by using 
the Rothfus formula for the zero shear stress position 
is about 20%. For the annular radius ratio a = 0.02 
the magnitude of the k-function is near 0.53 and the 
corresponding error in calculation of the Sherwood 
number will be about 50%. 

It seems that Equation 36 together with the 
Expression 37 for the q~-function should exactly 
coincide with those obtained by the Ross and Wragg 
procedure [1] if we equate the k-function in 
Equation 37 with unity. Indeed in [1] Equation 36 was 
obtained, but the ~-function in this work is equal to 
/I~ R (Equation 29). 

For the case of radius ratio a = 0.5 which was 
studied experimentally by Ross and Wragg [1] 
Equation 29 gives ~R = 1.295. On the other hand 
Equation 37, with k-function equal to unity, gives 

= 1.t64, which is 11% less than ¢5 R. 
This additional distinction between our treatment 

and the results of the work [1] is due to the form of 
the equation for the overall friction factor which 
was proposed by Rothfus [22]. In this work the Blas- 
ius law for the overall friction factor was also used. 
However, the Reynolds number was based on the 
length connected with the position of the zero shear 
stress but not on the hydraulic diameter, dh. As was 
mentioned above the most reliable experimental 

data are in a good agreement with the classical form 
of the Blasius law (Equation 19). 

4.2. Expression of  the inner wall Sherwood number for  
practical calculation 

Equations 34-38 give the inner wall Sherwood 
number in terms of the k-function. For practical 
calculation it is desirable to express the inner wall 
Sherwood number in terms of Reynolds number and 
geometric factor. Such an expression can be obtained 
by calculation of the inner wall shear stress, ~-1, 
(Equation 23) with respect to the Kays-Leung 
Equation (30) and by substituting ~'1 into the Leveque 
Equation (13). As a result we obtain 

Sh 1 = 0.807Scl/3(dh/L)l/30c ReZ)l/3[g~k(a)] I/3 (39) 

where the overall friction factor f is determined 
by the Blasius law (Equation 19), or for large 
values of the Reynolds number by the Nikuradse law 
(Equation 20), and with the geometrical factor 

[. a / a  n .  1 + 

¢ ) x ( a ) -  2( l - -a )  \ a-Y~2i 

for 0.01 < a < 0.5 (40) 

With respect to the Rehme data [10] the power in 
Equation 40 is n = 0.386. 

For large values of radius ratio (a>0.5)  
Equation 39 with the geometrical factor ~k = 1 can be 
used, so for this case the difference between annuli 
and plain tubes is negligible, at least within 5% 
accuracy. 

Of course Equations 39 and 40 do not take into 
account the dependence of the zero shear stress 
position on the Reynolds number. To take into 
account this dependence Equation 31 may be used, 
but, more precisely, measurements of the k-function 
(Equation 32) should be done. 

4.3. Sherwood number for  the outer annular cylinder 

The Sherwood number for the outer annular cylinder, 
Shz, can be predicted if it is taken into account that 
the ratio of the Sherwood numbers for the inner and 
outer walls is proportional to the ratio of the wall 
shear stress for these walls: 

Sh2 = [7"2/~q [1/3Shl (41) 

We assume that the mass transfer surface length is the 
same for the inner and outer walls. 

By using Equations 23, 24, 27 and 32 the 
following expression for the wall shear stress ratio is 
obtained: 

r2 a[21n(1/a) - (1 - a2)k a] 
~-1 -k2(1 - a 2) q- 2a 2 ln(1/a) 

(42) 

which, together with Equation 41, predicts the 
Sherwood number for the outer annular cylinder. 
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For small values of the annular ratio Equation 41 
simplifies to 

7-2 2aln(1/a)  
7"1 _k  2 for a << 1 (43) 

and the expression for the Sherwood number for the 
outer cylinder takes the form of Equation 36, 
where the geometrical factor is equal to unity 
(see Equations 38 and 43), so 

Sh e = 0.275 Scl/3(dh/L)l /3Re 7/12 (44) 

Equation 43 has absolutely the same form as the 
well-known equation for the Sherwood number for 
the case of plain tubes. 

5. Possibility of electrodiffnsion diagnostics for the 
precise determination of the zero shear stress position in 
annuli with small radius ratio 

As discussed above the determination of the zero 
shear stress position is the key problem for the 
prediction of hydrodynamic, as well as heat and 
mass transfer, characteristics in annuli under fully 
developed turbulent flow conditions. In all the 
previous papers [8-15, 36-38] the determination of 
the zero shear stress position was done by using 
Pitot or Preston tubes as well as hot wire 
anemometers. But all these experimental techniques 
have one principal defect, namely, perturbation of 
the flow characteristics due to sensor introduction 
into the stream. This defect plays a considerable role 
for the case of annuli with small radius ratios because 
of the small distance between the zero shear stress 
plane and inner wall. 

Electrodiffusion techniques which are now 
widely used to measure the time-average value and 
fluctuations of the wall shear stress in a turbulent 
flow [28] is free from this defect. The electro- 
diffusion technique is based on small mass 
transfer probes, mounted flush to a wall over 
which a fluid is flowing. An electrochemical 
reaction is carried out on the surface of an 
electrode under conditions such that the electro- 
chemical process is controlled by the rate of 
mass transfer. So, the measured electric current 
is related to the mass transfer rate by Faraday's 
law and the current measurements allow deter- 
mination of the Sherwood number and the wall 
shear stress. 

To determine the zero shear stress position the 
working electrode can form a part of the inner 
annular cylinder. For annuli with small radius ratio 
the inner wall Sherwood number, Shl, can be 
determined by using polarographic measurements 
and plotted against the quantity q: 

14 ]1/3 
q = 0"807~-1/3 #LDa 5 ln(1/a)J (45) 

This allows (see Equation 35) the k-function to be 
obtained: 

Shl = kZ/3q (46) 

which gives the difference between the real position of 
the zero shear stress plane and that predicted by the 
Rothfus formula (Equations 27 and 31). 

6. Conclusions 

The present study shows that annuli with small radius 
ratio cannot be considered as a limiting case of plain 
tubes with respect to the problem of mass transfer 
on the inner annular wall. 

In contrast, with plain tubes, two factors should be 
taken into account. First, due to the asymmetric 
character of the velocity profile, the position of the 
zero shear stress in annuli with small radius ratio for 
turbulent flow significantly differs from the laminar 
case. So, prediction of the Sherwood number for the 
inner annular wall based on the classical Rothfus 
hypothesis about coincidence of the zero shear stress 
position for laminar and turbulent flows leads to 
serious error in the case of small radius ratio. When 
the annular radius ratio, a, is equal to 0.1 the 
corresponding error in the prediction of the inner 
wall Sherwood number is about 20%. For an 
annulus with the radius ratio a = 0.02 this error is 
about 50%. 

Equations 34-38 of this paper predict the 
Sherwood number for the inner annular wall in terms 
of the Reynolds number (or pressure drop) as well as 
the k-function which gives the difference between the 
real position of the zero shear stress plane and that 
predicted by the Rothfus formula (see Equations 27 
and 31). For practical calculations of the inner wall 
Sherwood number Equation 39, with the geometrical 
factor Equation 40, can be recommended. 

The Sherwood number for the outer annular wall 
has absolutely the same form as the well-known 
equation for the Sherwood number for the case of 
plain tubes, see Equation 43. The difference between 
annuli and plain tubes is also negligible for the inner 
wall Sherwood number if one deals with large values 
of annular ratio a > 0.5. 

The curvature is another factor which should be 
taken into account in annuli in contrast with plain 
tubes. Because of very high (infinite in the limiting 
case a ~ 0) magnitude of the inner wall shear 
stress the well-known Leveque equation can be 
applied for the prediction of the inner wall Sherwood 
number only under certain conditions. In other 
words the Leveque equation may be used only if the 
length of the mass transfer surface is small enough 
in comparison with the maximum length defined by 
Equations 11 and 12. The curvature of the geometry 
plays an essential role for annuli with small radius 
ratio in the case of low Reynolds numbers. 

The present study shows that the position of zero 
shear stress in annuli can be very precisely 
determined by using electrodiffusion diagnostics 
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(see Equation 43), which has definite advantage in 
comparison with Pitot or Preston tubes and hot wire 
anemometers. 
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